

New Nano-Enabled Products Pilot A Vanguard Initiative Pilot Project

11 April 2018 Brussels

Dr. Els Van de Velde Network Manager of the New Nano-Enabled Products Pilot

1. Introduction: What is the New Nano-Enabled Products Pilot?

New growth through smart specialisation

Vision:

- Connect regions to build industrial ecosystem in nanotechnology
- Create pilot production facilities for products based on nanomaterials
- Development of prototypes & securing the reproducibility

www.s3vanguardinitiative.eu/cooperations/vanguard-initiative-pilot-project-new-nano-enabled-products

1. Introduction: What is the New Nano-Enabled Products Pilot?

Added Value:

- Connecting regional strengths
- Create a strong European industrial fabric within nanotechnology
- Emergence of new value chains within innovative nanomaterials
- Connecting European R&D and laboratory infrastructure with different types of industries
- Strong network with extensive experience
- Supporting SME's in their internationalisation

New growth through smart specialisation

1. Introduction: What is the New Nano-Enabled Products Pilot?

Part of the Smart Specialisation Platform on Industrial Modernisation

GaN/InGaN high speed LEDs for optical data transmission (LiFi)

Source: RI.SE

2. Cases: 1: Nano Wires for ICT and Energy Applications

Aim:

- To identify opportunities to commercialise the nanowire technology
- Address nanowire specific challenges:
 - High yield production
 - Integration of nanowire components in existing systems
 - Injection into existing value chains

Market Segments:

- Photovoltaics:
 - Using complex geometry to serve as antennae
 - New production technology for mass production sought
- Lighting:
 - Efficiency and tune-ability of LEDs via nanowires
 - Filling the "green gap"
- Power and RF electronics:
 - Enabling cost effective high-quality substrates

2. Cases:1: Nano Wires for ICT and Energy Applications

Proposed action:

- Development of a cross-regional platform on nanowires
- Objective:
 - Showcase potential of companies working with nanowire-focused products
 - Facilitate engagement of international partners in joint efforts
 - Creating new inter-regional value chains spanning throughout Europe
- This will require active participation and validation from RTOs and industrial players

Contact:

- Dr. Kristian Storm, Senior Scientist and Project Manager at RISE Acreo AB in Sweden
- ► <u>Kristian.storm@acreo.se</u>

2. Cases:2: Nano-enabled Microsystems for Bioanalysis (NeMs4Bio)

Aim:

- Address the microfluidic integration challenges covering aspects such as:
 - bio-functionalisation,
 - nano-functionalisation,
 - heterogeneous cross-KET microfluidic integration (Si-on-X, Si-in-X)
- Towards a module format
 - (e.g. chip carrier, cartridge)

2. Cases:2: Nano-enabled Microsystems for Bioanalysis (NeMs4Bio)

Markets in fluid analysis:

- Analysis for medical applications
- Analysis for food production
- Analysis for environmental lab analysis
- Analysis for bio-manufacturing processes

in flow or batch, continuous or repeated monitoring (mostly excluding single-use)

Source: imec

2. Cases:2: Nano-enabled Microsystems for Bioanalysis (NeMs4Bio)

Proposed action for the platform:

- Developing a network of pilot production facilities across participating regions and involvement of core platform teams and application-specific experts, including system builders and end-users
- This will require active participation and validation from RTOs and industrial players

Contact:

Dr. Wolfgang Eberle, Funded Program Manager Smart Health at imec in Belgium, wolfgang.eberle@imec.be

2. Cases:3: Nano-Enabled Printed Electronics

Aim:

- Objective is to push printed electronics to the market
- Potential application fields are located in:
 - Intelligent sensors (automotive, medical technology, food monitoring and smart textiles)
 - The Internet of Things (IoT)
 - Security applications
 - Energy storage and energy harvesting
- Challenge faced: transfer of such technologies from the lab to the market

2. Cases:3: Nano-Enabled Printed Electronics

Printed battery (Enfucell)

Printed solar sub-module on flexible substrate (KIT)

Inkjet-printed OLED (Merck)

Smart label w/ printed memory technology licensed to Xerox

Hybrid passive RFID w/ screen printed antenna

VANGUARD NITIATIVE New growth through smart specialisation

2. Cases:3: Nano-Enabled Printed Electronics

Projects:

- Printed Smart Tags:
 - Development of an interface for the interaction with a smartphone display for variable applications
- Printed Electronics on Curved Surfaces (SHAPETRONICS)
 - Development of technologies to apply functional printed structures directly onto 3d-objects.
- Smart Textiles and Sensors
 - Product design and commercialization of integrated sensors in textiles for medical application.
- Organic Electronics
 - Development of fabrication processes and upscaling of organic electronic devices.

Contact

Dr. Christian Punckt, Associate Director of NanoMat, KIT, Germany, Christian.punckt@kit.edu

3. Way Forward1: The issue

- Industry Modernisation is a common concern of:
 - Industrial competitiveness
 - Growth and Employment
 - Regional Policy Smart Specialisation 2.0
 - Policies across levels of governance (regions MS EU)
- Deployment and absorption of new technologies = critical ingredient of Industrial Modernisation, growth & jobs ...
- But the EU increasingly challenged by (new) competitors with regard to technology deployment and industrial performance
- The EU is <u>sub-performing</u> in technology deployment; the VI has identified inadequacies in the current funding landscape that prevent any continuous pipeline of investments to emerge ...

3. Way Forward2: Approach for new investment pipelines

New growth through smart specialisation

Establishing "Industry Commons" = shared demonstration facilities to speed up technology deployment in/by industrial companies

3. Way Forward

- 3: Constraints: lack of adequate funding instruments
 - Strong industrial interest & comittment, but major constraint = How to get this funded ?
 - Some partial solutions exist, but ...
 - 1. There remains a financial gap ('non-profitable top') that can only be covered by subsidies (mainly layer 1)
 - 2. Such funding instrument (subsidies) does not exist in pan-EU context
 - 3. Existing solutions (layer 2 & 3) are
 - Highly uncertain, and
 - Extremely complex to combine with each other
 - Thus, at this moment: impossible to set up a continuous pipeline of industrial investments ... Only 'lucky one shots' possible ...

3. Way Forward4: Potential solutions

- Layer 1 costs (establishing the joint-demo infrastructure):
 → Centrally managed EU fund, co-financed by regions, or an expanded Interreg `B', to support the creation of industry commons with grants
- Layer 2 costs (operating costs for demo activities):
 → combining regional subsidies to compensate for costs incurred to visits to demonstration facilities in other regions
- Layer 3 costs (industrial replication & upscale):
 - → thematic expansion of the InnovFin Energy Demo Projects instrument to cover broader industrial modernisation activities.
- The major constraint in this funding model is the provision of centrally managed grants for the establishment of shared infrastructure (layer 1).

3. Way Forward5: Impacts

- 1. Lowering technology risks and uncertainty
- Speeding up industrial upscale and market uptake → Additional leverage for the EIB and InnovFin;
- 3. 15 to 20 'Shared Demonstration Platforms' ready to start; strong industrial committment to co-invest and use the demo-infrastructure once it is operational.
- 4. Potential to increase efficiency of research and innovation systems
- 5. Moving beyond "just retour" thinking, towards "high return thinking".